Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice.
نویسندگان
چکیده
The mechanisms by which fluid moves across the luminal membrane of cholangiocyte epithelia are uncertain. Previous studies suggested that aquaporin-1 (AQP1) is an important determinant of water movement in rat cholangiocytes and that cyclic AMP mediates the movement of these water channels from cytoplasm to apical membrane, thereby increasing the osmotic water permeability. To test this possibility we measured agonist-stimulated fluid secretion and osmotically driven water transport in isolated bile duct units (IBDUs) from AQP1 wild-type (+/+) and null (-/-) mice. AQP1 expression was confirmed in a mouse cholangiocyte cell line and +/+ liver. Forskolin-induced fluid secretion, measured from the kinetics of IBDU luminal expansion, was 0.05 fl/min and was not impaired in -/- mice. Osmotic water permeability (P(f)), measured from the initial rate of IBDU swelling in response to a 70-mosM osmotic gradient, was 11.1 x 10(-4) cm/s in +/+ mice and 11.5 x 10(-4) cm/s in -/- mice. P(f) values increased by approximately 50% in both +/+ and -/- mice following preincubation with forskolin. These findings provide direct evidence that AQP1 is not rate limiting for water movement in mouse cholangiocytes and does not appear to be regulated by cyclic AMP in this species.
منابع مشابه
Phenotype analysis of aquaporin-8 null mice.
Aquaporin-8 (AQP8) is a water-transporting protein expressed in organs of the mammalian gastrointestinal tract (salivary gland, liver, pancreas, small intestine, and colon) and in the testes, heart, kidney, and airways. We studied the phenotype of AQP8-null mice, and mice lacking AQP8, together with AQP1 or AQP5. AQP8-knockout mice lacked detectable AQP8 transcript and protein, and had reduced ...
متن کاملVery high aquaporin-1 facilitated water permeability in mouse gallbladder.
Water transport across gallbladder epithelium is driven by osmotic gradients generated from active salt absorption and secretion. Aquaporin (AQP) water channels have been proposed to facilitate transepithelial water transport in gallbladder and to modulate bile composition. We found strong AQP1 immunofluorescence at the apical membrane of mouse gallbladder epithelium. Transepithelial osmotic wa...
متن کاملChannel-mediated water movement across enclosed or perfused mouse intrahepatic bile duct units.
We previously reported the development of reproducible techniques for isolating and perfusing intact intrahepatic bile duct units (IBDUs) from rats. Given the advantages of transgenic and knockout mice for exploring ductal bile formation, we report here the adaptation of those techniques to mice and their initial application to the study of water transport across mouse intrahepatic biliary epit...
متن کاملFluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.
The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical curren...
متن کاملAquaporins in rat pancreatic interlobular ducts.
The aquaporin (AQP) family of water channels is distributed ubiquitously in many epithelia and plays a fundamental role in transmembrane water transport. The aim of this study is to identify the water transport pathway in pancreatic duct cells where most of the HCO-rich fluid originates. Using digital videomicroscopy, we measured the osmotic water permeability (P(f)) of pancreatic duct epitheli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 283 3 شماره
صفحات -
تاریخ انتشار 2002